A szilícium-karbid (SiC) egykristályos anyag nagy sávszélességgel (~Si 3-szor), magas hővezető képességgel (~Si 3,3-szoros vagy GaAs 10-szeres), nagy elektrontelítési vándorlási sebességgel (~Si 2,5-szeres), nagy elektromos áttöréssel rendelkezik. mező (~Si 10-szer vagy GaAs 5-ször) és egyéb kiemelkedő jellemzők.
A harmadik generációs félvezető anyagok közé elsősorban a SiC, GaN, gyémánt stb. tartozik, mivel sávszélessége (Eg) nagyobb vagy egyenlő, mint 2,3 elektronvolt (eV), más néven szélessávú félvezető anyagok. Az első és a második generációs félvezető anyagokkal összehasonlítva a harmadik generációs félvezető anyagok előnye a nagy hővezetőképesség, a nagy áttörési elektromos mező, a nagy telített elektronvándorlási sebesség és a nagy kötési energia, amelyek megfelelnek a modern elektronikai technológia új követelményeinek a nagy teljesítmény érdekében. hőmérséklet, nagy teljesítmény, nagy nyomás, nagyfrekvenciás és sugárzásállóság és egyéb zord körülmények. Fontos alkalmazási lehetőségei vannak a honvédelem, a légi közlekedés, az űrhajózás, az olajkutatás, az optikai tárolás stb. területén, és több mint 50%-kal csökkentheti az energiaveszteséget számos stratégiai iparágban, mint például a szélessávú kommunikáció, a napenergia, az autógyártás, félvezető világítás és intelligens hálózat, és több mint 75%-kal csökkentheti a berendezések mennyiségét, ami mérföldkő jelentőségű a humán tudomány és technológia fejlődése szempontjából.
A Semicera Energy kiváló minőségű vezetőképes (vezetőképes), félszigetelő (félszigetelő), HPSI (nagy tisztaságú félszigetelő) szilícium-karbid hordozót tud biztosítani az ügyfeleknek; Ezen kívül homogén és heterogén szilícium-karbid epitaxiális lemezeket is tudunk biztosítani vásárlóink számára; Az epitaxiális lapot az ügyfelek egyedi igényei szerint is testre szabhatjuk, és nincs minimális rendelési mennyiség.
WAVERING ELŐÍRÁSAI
*n-Pm = n-típusú Pm-minőség, n-Ps = n-típusú Ps-minőség, Sl = félszigetelő
Tétel | 8 hüvelykes | 6 hüvelykes | 4 hüvelykes | ||
nP | n-pm | n-Ps | SI | SI | |
TTV (GBIR) | ≤6 um | ≤6 um | |||
Íj(GF3YFCD) – Abszolút érték | ≤15μm | ≤15μm | ≤25 μm | ≤15μm | |
Warp (GF3YFER) | ≤25 μm | ≤25 μm | ≤40 μm | ≤25 μm | |
LTV (SBIR)-10mmx10mm | <2 μm | ||||
Wafer Edge | Ferde vágás |
FELÜLETKEZELÉS
*n-Pm=n-típusú Pm-minőség, n-Ps=n-típusú Ps-minőség, Sl=félszigetelő
Tétel | 8 hüvelykes | 6 hüvelykes | 4 hüvelykes | ||
nP | n-pm | n-Ps | SI | SI | |
Felületi kidolgozás | Kétoldalas optikai polírozás, Si-Fece CMP | ||||
Felületi érdesség | (10 x 10 um) Si-FaceRa≤0,2 nm C-Face Ra≤ 0,5 nm | (5umx5um) Si-Face Ra≤0,2nm C-Face Ra≤0,5nm | |||
Edge Chips | Egyik sem megengedett (hossz és szélesség ≥0,5 mm) | ||||
Behúzások | Egyik sem Engedélyezett | ||||
Karcolások (Si-Face) | Menny.≤5, kumulatív Hossz ≤0,5× ostyaátmérő | Menny.≤5, kumulatív Hossz ≤0,5× ostyaátmérő | Menny.≤5, kumulatív Hossz ≤0,5× ostyaátmérő | ||
Repedések | Egyik sem Engedélyezett | ||||
Élek kizárása | 3 mm |